

Parameters Subject to Change Without Notice

# DESCRIPTION

The HX8808E is a buck boost converter targets HVDC fast charging system.

The HX8808E supports 1 to 4 cells Li-ion battery, the full charge voltage and charge current can be programmed through external resistor.

The HX8808E implements the Buck Boost converter with an H-bridge. The integrated low  $R_{DS}(on)$  MOSFET minimizes physical footprint, maximizescharge efficiency. Built-in loop compensation simplifies the circuit and design. PFM is engaged to maintain high efficiency at light load current.

HX8808E guarantees robustness with thermal protectionand battery under voltage lockout.

# HX8808E High Efficiency, 3A, Multi-Cells Li-Ion Battery Charger

## FEATURES

- Integrate low R<sub>DS</sub>(on) power MOSFET
- Wide input range:4.2V-21.0V,support 1 to 4 cells battery charge
- Full charge voltage:1.2V-17V through external resistor or selectable by BATFB pin
- High efficiency buck-boost transition
- 450kHz Switching frequency
- Programmable charge current, up to 3A
- Quiescent current: <5uA
- Integrate batteryshort protection
- Integrate thermal protection
- QFN3\*4 package

## **APPLICATIONS**

- Power bank systems
- Battery and supercapacitor charging
- USB power delivery
- Industrial applications
- Automotive systems



# TYPICAL APPLICATION



# **ORDER INFORMATION**



# **PIN CONFIGURATION**



# ABSOLUTE MAXIMUM RATING<sup>1)</sup>

| VIN,BAT, SW1, SW2 Pin                 | 0.3V to24V     |
|---------------------------------------|----------------|
| BST1-SW1, BST2-SW2                    | 0.3V to 6.5V   |
| All Other Pins                        | 0.3V to 6.5V   |
| JunctionTemperature <sup>2)3)</sup>   | 150°C          |
| Lead Temperature                      | 260°C          |
| Storage Temperature                   | 65°C to +150°C |
| ESD Susceptibility (Human Body Model) | 2kV            |



# **RECOMMENDED OPERATING CONDITIONS**

| Input Voltage VIN                         | 4.2\         | √ to 21V                |
|-------------------------------------------|--------------|-------------------------|
| Battery Voltage VBAT                      | 3.0          | V to 17V                |
| Operation Junction Temp (T <sub>J</sub> ) | -40°C to     | +125°C                  |
| THERMAL PERFORMANCE <sup>4</sup> )        | $	heta_{JA}$ | $oldsymbol{	heta}_{JC}$ |

## 

#### Note:

- 1) Exceeding these ratings may damage the device.
- **2)** The HX8808E guarantees robust performance from -40°Cto 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.
- 3) The HX8808E includes thermal protection that isintended protect the device in overload conditions. Thermal protection is active when junctiontemperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolutemaximum operating junction temperature may damage the device.
- 4) Measured on JESD51-7, 4-layer PCB.



# **ELECTRICAL CHARATERISTICS**

| Item                                             | Symbol                                  | Condition                                                                 | Min.  | Тур.  | Max.  | Units           |
|--------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|-------|-------|-------|-----------------|
| Power supply                                     |                                         |                                                                           |       |       |       |                 |
| VBAT voltage range                               | V <sub>BAT</sub>                        |                                                                           | 3.0   |       | 21    | V               |
| VCC output voltage                               | V <sub>CC</sub>                         |                                                                           | 4.7   | 5.0   | 5.3   | V               |
| VCC output current limit                         | I <sub>VCC</sub>                        | VCC>2.7V                                                                  |       | 50    |       | mA              |
| Supply current in shut-down mode                 | lq                                      | V <sub>BAT</sub> =8V, CE=0V                                               |       | 3     | 5     | μA              |
| Controller                                       |                                         |                                                                           |       |       |       |                 |
| Switch frequency                                 | F <sub>sw</sub> <sup>5)</sup>           |                                                                           | 350   | 450   | 450   | kHz             |
| Switch minimum off time                          | ${\sf T}_{{\sf off}\_{\sf min}}{}^{5)}$ |                                                                           | 80    | 100   | 120   | ns              |
| Charge enable Threshold                          | $V_{CE}$                                |                                                                           | 14.7% | 16.7% | 18.7% | V <sub>CC</sub> |
| Bucktop switch on-resistance                     | $R_{dsbkTG}^{5)}$                       |                                                                           |       | 20    | 28    | mΩ              |
| Buck bottom switchon-resistance                  | ${\sf R}_{\sf dsbkBG}^{(5)}$            |                                                                           |       | 20    | 28    | mΩ              |
| Boost top switch on-resistance                   | $R_{dsbstTG}^{5)}$                      |                                                                           |       | 20    | 28    | mΩ              |
| Boost bottom switch on-resistance                | $R_{dsbstBG}^{5)}$                      |                                                                           |       | 20    | 28    | mΩ              |
| Charge                                           |                                         |                                                                           |       |       |       |                 |
|                                                  | V <sub>CV</sub>                         | V <sub>BATFB</sub> =GND                                                   | 8.358 | 8.4   | 8.442 | - v             |
| Floating BAT Voltage                             |                                         | Set by divider resistor                                                   | 3.0   | -     | 17    |                 |
| BAT feedback voltage                             | VBATFB                                  | External resistor divider                                                 | 1.191 | 1.2   | 1.212 | V               |
| BAT Recharge threshold                           | $V_{REC}$                               | V <sub>BATFB</sub> = GND                                                  | 8.118 | 8.2   | 8.282 | V               |
| BAT recharge feedback threshold                  | V <sub>RECFB</sub>                      | External resistor divider                                                 | 1.159 | 1.171 | 1.183 | V               |
| CC mode charge current                           | I <sub>CC</sub>                         | R <sub>CS</sub> =10mΩ, R <sub>ISET1</sub> =2K<br>R <sub>ISET2</sub> =1.5K | 1.9   | 2     | 2.1   | А               |
| Charge termination current                       | I <sub>TER</sub>                        | R <sub>CS</sub> =10mΩ, R <sub>ISET1</sub> =2K<br>R <sub>ISET2</sub> =1.5K |       | 10%   |       | I <sub>CC</sub> |
| Battery full charge deglitch time                | T <sub>FULL</sub>                       | I <sub>CC</sub> < I <sub>TER</sub>                                        |       | 500   |       | ms              |
| Trickle mode charge current                      | I <sub>TRI</sub>                        |                                                                           | 10%   | 20%   | 30%   | Icc             |
| Trickle mode battery threshold                   | V <sub>TRI</sub>                        | V <sub>BATFB</sub> = GND                                                  | 5.9   | 6.0   | 6.1   | V               |
| Trickle mode feedback threshold                  | V <sub>TRIFB</sub>                      |                                                                           |       | 0.857 |       | V               |
| Trickle charge time-out duration                 | T <sub>TRI</sub>                        |                                                                           |       | 55    |       | min             |
| VIN UVP threshold                                | V <sub>IN_UVP</sub>                     | VIN rising                                                                | 4.0   | 4.2   | 4.3   | V               |
|                                                  |                                         | VIN falling                                                               | 3.8   | 4.0   | 4.1   | V               |
| VIN delay to start charging                      | T <sub>chg_delay</sub>                  |                                                                           |       | 150   |       | ms              |
| DRP reference voltage for adaptive current limit | V <sub>DRP</sub>                        |                                                                           | 0.885 | 0.9   | 0.915 | v               |

4



| Battery under temperature protection threshold | V <sub>UTP</sub>                | 70.2% | 72.2% | 74.2% | V <sub>CC</sub> |
|------------------------------------------------|---------------------------------|-------|-------|-------|-----------------|
| Battery over temperature protection threshold  | V <sub>OTP</sub>                | 27.2% | 29.2% | 31.2% | Vcc             |
| Thermal shutdown threshold <sup>5)</sup>       | T <sub>SHUT</sub> <sup>5)</sup> |       | 150   |       | °C              |
| Thermal recovery threshold <sup>5)</sup>       | T <sub>REC</sub> <sup>5)</sup>  |       | 130   |       | °C              |

Notes:

5) Guaranteed by design.



# **PIN DESCRIPTION**

| Pin No. | Name                                    | Description                                                                                     |  |  |  |  |
|---------|-----------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| 1       | CSP                                     | Positive terminal of battery charge current sense.                                              |  |  |  |  |
| 2       | BAT                                     | Battery positive terminal.                                                                      |  |  |  |  |
| 3       | PGND                                    | Power Ground.                                                                                   |  |  |  |  |
| 4       | VIN                                     | Main supply pin, connect to adaptor.                                                            |  |  |  |  |
| 5       | DRP                                     | VIN droop allowance program pin.                                                                |  |  |  |  |
|         |                                         | This is a multi-purpose pin.                                                                    |  |  |  |  |
| 6       | CE/NTC                                  | 1. Charge enable pin.                                                                           |  |  |  |  |
|         |                                         | 2. Battery temperature protection pin.                                                          |  |  |  |  |
|         |                                         | Open-drain charge status output. Connect the STAT pin to a logic rail via $10k\Omega$ resistor. |  |  |  |  |
|         | 7 STAT                                  | The STAT pin indicates charger status. Connect a current limit resistor and a LED from          |  |  |  |  |
| 7       |                                         | VCC to this pin.                                                                                |  |  |  |  |
| /       |                                         | Charge in progress: LOW                                                                         |  |  |  |  |
|         |                                         | Charge complete or charger in SLEEP mode: HIGH                                                  |  |  |  |  |
|         |                                         | Charge suspend (fault response): 1-Hz, 50% duty cycle pulses.                                   |  |  |  |  |
| 8       | BST1                                    | VIN side bootstrap supply pin for top switch. 0.1uF capacitor is connected between              |  |  |  |  |
| 0       | 5311                                    | BST1 and SW1 pins.                                                                              |  |  |  |  |
| 9       | SW1                                     | VIN side power switching node. connect to SW2 with inductor                                     |  |  |  |  |
| 10      | SW2                                     | BAT side power switching node.                                                                  |  |  |  |  |
| 11 BST2 |                                         | BAT side bootstrap supply pin for top switch. 0.1uF capacitor is connected between              |  |  |  |  |
| 11      | 6312                                    | BST2 and SW2 pins.                                                                              |  |  |  |  |
|         |                                         | Battery float voltage configuration pin.                                                        |  |  |  |  |
|         | BATFB                                   | 1. This pin tied to GND, sets 2 cells float voltage.                                            |  |  |  |  |
| 12      |                                         | Pin short to GND: 8.4V.                                                                         |  |  |  |  |
|         |                                         | 2. And the float voltage could be set to any value (3.0V-17V) by the external divider           |  |  |  |  |
|         |                                         | resistor.                                                                                       |  |  |  |  |
| 13      | VCC                                     | 5V LDO for power driver and internal circuit. Must be bypassed to GNDwith a minimum             |  |  |  |  |
| 10      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | of 10uF ceramic capacitor for stable operation.                                                 |  |  |  |  |
| 14      | GND                                     | Signal GND.                                                                                     |  |  |  |  |
| 15      | CSN                                     | Negative terminal of battery charge current sense.                                              |  |  |  |  |



# **TYPICAL PERFORMANCE CHARACTERISTICS**

#### $V_{IN}$ =5V, L = 3.3µH, $C_{IN}$ = 20µF, $C_{OUT}$ = 20µF, TA = +25°C, unless otherwise noted

#### Tricklecharge @ 1 cell



#### Constantcurrentcharge@ 1 cell



#### Constantvoltagecharge@ 1 cell



#### Tricklecharge @ 2 cells



#### Constantcurrentcharge@ 2 cells



#### Constantvoltagecharge@ 2 cells



#### Tricklecharge @ 3 cells



#### Constantcurrentcharge@ 3 cells



#### Constantvoltagecharge@ 3 cells





# TYPICAL PERFORMANCE CHARACTERISTICS(Continued)

## $V_{IN}$ =5V, L = 3.3µH, C<sub>IN</sub>= 20µF, C<sub>OUT</sub> = 20µF, TA = +25°C, unless otherwise noted

#### Charge efficiency @ 1 cell



#### Charge efficiency @ 2 cells



#### Charge efficiency @ 3 cells



#### Charge current vs. VBAT@ 1 cell



#### Charge current vs. VBAT @ 2 cells



#### Charge current vs. VBAT @ 3 cells





# FUNCTIONAL DESCRIPTION

HX8808E is a monolithic buck-boost charger that can operate over a wide input voltage range of 4.2V to 17V. The full chargevoltage and charge current can be programmable through external resistor. Low  $R_{DSON}$  N-channel power switches reduce the solution complexity and improve the efficiency.

The DC-DC converter utilizes proprietary single inductorcurrent-mode control to guarantee smooth transitionbetween buck and boost operation with better dynamic response and cycle-by-cycle current protection.

Compensation is done internally onthe chip. The HX8808E operates in PFM mode at light load. In PFM mode, switching frequency is continuouslycontrolled in proportion to the load current, i.e. switch frequency is decreased when load current drops to boost power efficiency at light load by reducing switching-loss, minimizing the circuit.

The HX8808E can operate in charge mode if a logic High is on CE pin. In charge mode, if the VIN voltage is lower than battery voltage, it is a boost converter. When the VIN voltage is higher than battery voltage, it is a buck converter.

## Charge mode

In charge mode, HX8808E regulates the battery current according to input voltage and battery voltage. It charges battery with three phases: trickle charge, constant current charge, constant voltage charge and charge termination. Figure 1(a) is a typical charge profile. Figure 1(b) is a charge profile with input current limit. When the input current is limited, the system decreases the charge current.



b) With input current limit Figure 1 Typical Charge Profile

#### Trickle charge

The HX8808E charges the battery with  $I_{TRI}$  when battery voltage is less than  $V_{TRI}$ . If charging remains in TC mode beyond the trickle-charge time  $T_{TRI}$ , charging terminates.

#### CC charge

When the battery is higher than  $V_{TRI}$ , the device charges the battery with  $I_{CC}$  if the input current is sufficient. When input current limit is hit, the device reduces the charge current automatically. The HX8808E can set the charge current through  $R_{ISET1}$  and  $R_{ISET2}$ , we recommend  $R_{ISET1}/R_{ISET2}$  is around 4/3.The maximum charge current is up to 3A.

$$I_{\rm CC}(A) = \frac{10(A)R_{\rm ISET1}(k\Omega)}{R_{\rm CS}(m\,\Omega)}$$





Figure 2 Typical Charge Profile

For 1A cc charge current, we recommend  $R_{ISET1}=2k$ ,  $R_{ISET2}=1.5k$ ,  $R_{CS}=20m\Omega$ ; and for 2A cc charge current, we recommend  $R_{ISET1}=2k$ ,  $R_{ISET2}=1.5k$ ,  $R_{CS}=10m\Omega$ .

## CV charge

When battery voltage equals to  $V_{CV}$ , the device regulates the battery voltage and reduces the charge current reduces automatically.

The customer can select 2 cells or program the  $V_{CV}$  through BATFB pin. Connect BATFB to GND selects 2 cells. The  $V_{CV}$  can also be programmable by resistor divider connected to BATFB, when the HX8808E detect a resistor connect to this pin. We recommend the 1‰ accuracy resistor should be used in order to achieve the accuracy of full charge voltage.The full charge voltage configuration shows in figure 3.



#### Figure 3 Full Charge Voltage Configure

$$V_{CV}(V) = \frac{1.2 V \times (R_4 + R_5)}{R_5}$$

#### **Charge termination**

If the battery voltage is higher than  $V_{FULL}$ , and the charge current is less than charge termination current  $I_{TER}$  for  $T_{FULL}$ , the charge process terminates.

#### Auto recharge

Once the battery charge cycle completes, the charger remains off. A new charge cycle automatically begins when the battery voltage falls below the auto-recharge threshold  $V_{REC}$  if the input adaptor is present. The idle mode to charge mode transition also restarts the charge cycle.

### **Charging status indication**

The HX8808E has open-drain output for charge status. Connect a current limit resistor and a LED from VCC to this pin can.

When charge is in progress, the STAT pin output LOW. When charge is completed or charger is in sleep mode, the STAT pin is output HIGH. When charge suspend at fault condition, the STAT pin blinks at 1Hz.

# Dynamic input Current Tracking Scheme

HX8808E detects the VIN pin, if the VIN pin voltage is higher than  $V_{IN\_UVP}$  rising threshold for 150ms, the HX8808E starts charging with a limited charging current. When the adaptor is over load, the DRP pin drops below the internal reference 0.9V, HX8808E will decrease the charging current. We recommend the ratio of R1/R2 is around 4.1. The input voltage sense shows in figure 4, choose R1, R2 to set the input voltage threshold.



#### Figure 4 VIN Droop Voltage Configure

$$\mathbf{V}_{IN\_ALLOWANCE}(\mathbf{V}) = \frac{V_{DRP}(\mathbf{V}) \times (R_1 + R_2)}{R_2}$$

## **Thermal Control**

When the junction temperature of the HX8808E



rises above 135°C, it begins to reduce the output power to prevent the temperature from rising further. If the junction temperature of the HX8808E rises above 150°C, the discharging process stops.

## Shut-down Mode

The HX8808E shuts down when voltage at CE pin is below charge enable threshold. The entire regulator is off.

## **Battery temperature protection**

For battery protection during charge mode, the device monitors the battery temperature through NTC pin. When the voltage of the NTC pin is outside the thresholds, the charge progress is suspended. In additional, STAT pin blinks at 1Hz to inform fault condition. Once temperature returns within thresholds, the charge is recovered.

## PCB Layout Note

For minimum noise problem and best operating performance, the PCB is preferred to following the guidelines as reference.

- Placethe input decoupling capacitor as close to HX8808E (VIN pin and PGND) as possible to eliminate noise at the input pin. The loop area formed by input capacitor and GND must be minimized.
- Put the current sense resistor R<sub>CS</sub> as close as possible to the current set resistors R<sub>ISET</sub> for better current accuracy.
- 3. The ground plane on the PCB should be as large as possible for better heat dissipation



# **REFERENCE DESIGN**

## Reference 1: Single cell charge with input current limit

 $\begin{array}{ll} V_{\text{IN}} & 4.6 \text{V} \sim 20 \text{V} \\ V_{\text{BAT}} & 3 \text{V} \sim 4.2 \text{V} \\ I_{\text{IN}\_\text{LIM}} & 2 \text{A} \end{array}$ 



## Reference 2: 2 cells charge with input current limit

 $\begin{array}{ll} V_{\text{IN}} & 4.6 \text{V} \sim 20 \text{V} \\ V_{\text{BAT}} & 6 \text{V} \sim 8.4 \text{V} \\ I_{\text{IN} \ \text{LIM}} & 2 \text{A} \end{array}$ 





## **Reference 3: 3 cells charge with input current limit**

 $\begin{array}{ll} V_{IN} & 4.6V \sim 20V \\ V_{BAT} & 9V \sim 12.6V \\ I_{IN\_LIM} & 2A \end{array}$ 



## Reference 4: Single cell charge with battery current limit





HX8808E

# PACKAGE OUTLINE

